-4sinx+5=4cos^2x

Simple and best practice solution for -4sinx+5=4cos^2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4sinx+5=4cos^2x equation:


Simplifying
-4sinx + 5 = 4cos2x

Reorder the terms:
5 + -4insx = 4cos2x

Solving
5 + -4insx = 4cos2x

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add '-5' to each side of the equation.
5 + -5 + -4insx = -5 + 4cos2x

Combine like terms: 5 + -5 = 0
0 + -4insx = -5 + 4cos2x
-4insx = -5 + 4cos2x

Divide each side by '-4nsx'.
i = 1.25n-1s-1x-1 + -1cn-1os

Simplifying
i = 1.25n-1s-1x-1 + -1cn-1os

Reorder the terms:
i = -1cn-1os + 1.25n-1s-1x-1

See similar equations:

| x^2-14x+41=-3 | | S+8=-10 | | .1x+.3x=.6 | | 8n+(-6)=58 | | 27x+7=45 | | (x+yi)2=4i | | 4x-2(x-5)=-5 | | 4e-7e+e= | | -4sinx-5=4cos^2x | | 7t=-147 | | 3x^2-12=-16 | | 24x^2/8x^-3 | | (-5m)-4+(-3)=13 | | 3x^2+9x+5= | | 8m^2+16m-37=5 | | 4x+3=27-2x | | G(x)=2(x+3)-4 | | 1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 | | P=t | | 2v^2+8v-16=10 | | 8y/(y-5)=x | | T-21=50 | | 1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1=x | | -7-16=-2 | | -3x=15/5 | | 49m^2=21m+18 | | 9p^2+21p+8=-2 | | 2n^2-20n+12=-6 | | 1+1=3c | | W(-7)=-2(-7)+1 | | 0.7(2x+6)=1.3-(x-3) | | h=-16t^2+44t |

Equations solver categories